Quivers and the Euclidean algebra ( Extended abstract )
نویسنده
چکیده
We show that the category of representations of the Euclidean group E(2) is equivalent to the category of representations of the preprojective algebra of the quiver of type A∞. Furthermore, we consider the moduli space of E(2)-modules along with a set of generators. We show that these moduli spaces are quiver varieties of the type considered by Nakajima. These identifications allow us to draw on known results about preprojective algebras and quiver varieties to prove various statements about representations of E(2). In particular, we show that E(2) has wild representation type but that if we impose certain combinatorial restrictions on the weight decompositions of a representation, we obtain only a finite number of indecomposable representations. Résumé. Nous montrons que la catégorie des représentations du groupe d’Euclide E(2) est équivalente à la catégorie des représentations de l’algèbre préprojective de type A∞. De plus, nous considérons l’espace classifiant de modules de E(2) avec un ensemble de générateurs. Nous montrons que ces espaces sont de variétés de carquois de Nakajima. Cette identification nous permet d’utiliser des résultats des algèbres préprojectives et des variétés de carquois pour prouver des affirmations sur des représentations de E(2). En particulier, nous montrons que le type de répresentations de E(2) est sauvage mais si nous imposons des restrictions aux poids d’une représentation, il y a seulement un nombre fini de représentations qui ne sont pas décomposables.
منابع مشابه
A ug 2 00 6 Invariants of quivers under the action of classical groups . A . A
Invariants of quivers under the action of classical groups. Abstract We consider a generalization of representations of quivers that can be derived from the ordinary representations of quivers by considering a product of arbitrary classical groups, instead of a product of the general linear groups, and by considering the dual action of groups on " vertex " vector spaces together with the usual ...
متن کاملDerived Classification of Gentle Algebras with Two Cycles
Abstract. We classify gentle algebras defined by quivers with two cycles under derived equivalence in a non degenerate case, by using some combinatorial invariants constructed from the quiver with relations defining these algebras. We also present a list of normal forms; any such algebra is derived equivalent to one of the algebras in the list. The article includes an Appendix presenting a slig...
متن کاملQuivers and the Euclidean group
We show that the category of representations of the Euclidean group of orientation-preserving isometries of two-dimensional Euclidean space is equivalent to the category of representations of the preprojective algebra of type A∞. We also consider the moduli space of representations of the Euclidean group along with a set of generators. We show that these moduli spaces are quiver varieties of th...
متن کاملA pr 2 00 7 Invariants of quivers under the action of classical groups . A . A . Lopatin Institute of Mathematics , Siberian Branch of the Russian Academy of Sciences , Pevtsova street
Invariants of quivers under the action of classical groups. Abstract We consider a generalization of representations of quivers that can be derived from the ordinary representations of quivers by considering a product of arbitrary classical groups instead of a product of the general linear groups and by considering the dual action of groups on " vertex " vector spaces together with the usual ac...
متن کاملOn the Complexity of the Extended Euclidean Algorithm (extended abstract)
Euclid’s algorithm for computing the greatest common divisor of 2 numbers is considered to be the oldest proper algorithm known ([10]). This algorithm can be amplified naturally in various ways. The GCD problem for more than two numbers is interesting in its own right. Thus, we can use Euclid’s algorithm recursively to compute the GCD of more than two numbers. Also, we can do a constructive com...
متن کامل